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Note 

Exact Magnetic Energy Conservation on a Nonuniform Mesh 

1. INTRODUCTION 

Coupled sets of partial differential equations occurring in classical physics often 
satisfy exact conservation laws for quantities such as mass, momentum, energy, 
electric charge and magnetic flux. When these equations are put into difference form 
for numerical solution on a computer there is some advantage in retaining the 
differential conservation laws as exact difference identities [l-4]. This improves 
confidence in the solution, and can be of considerable practical help in showing up 
minor errors in the difference algebra and the coding which frequently make them- 
selves apparent by a lack of exact conservation, although for this it has proved 
essential to use double precision on 32-bit machines. Boundary conditions are also 
often expressed more elegantly and satisfactorily in conservative form. 

To establish difference identities is usually straightforward for linear quantities like 
mass, charge and magnetic flux. Energy may, however, involve quadratic or cubic 
expressions such as pva, B2, pT, J2 where as usual p is the density, v the velocity, 
B the magnetic field, T the temperature and J is the current density. Here there appears 
to be no general guarantee that an exact ditference identity can always be found [3]. 

A general discussion of conservative and nonconservative MHD difference schemes 
has been given by Lindemuth [2]. Our intention in this Note is to examine in detail 
one particular example, indicating the complexities that arise in practice and how 
they can be resolved. The problem chosen is that of ensuring exact conservation of 
energy during magnetic field diffusion so that energy which is lost from the magnetic 
field reappears as ohmic heating of the plasma. The algorithm to be described forms 
part of the 1DMHD equilibrium and diffusion code ATHENE 1 [5,6], which studies 
the evolution of a plasma in cylindrical geometry using a moving Lagrangian mesh 
which necessarily becomes spatially nonuniform. This nonuniformity complicates the 
algebra but an optimum choice of difference formulas can nevertheless be obtained. 

2. MHD EQUATION 

Cylindrical geometry (r, 8, z) is used with the physical variables depending only on 
(r, t). The model used in ATHENE 1 assumes a magnetically collfined plasma to 
evolve through a sequence of pressure equilibria satisfying 

Vp = J x B, 
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where p = 2nkT is the plasma pressure and n is the number density. (For brevity in 
this Note we assume equal electron and ion temperatures and set p0 = 1.) Diffusion 
of magnetic fields and thermal energy is described by 

aB, aE, aB, 1 WZJ 
-=-9 -=---7 at ar at r ar 

CaT 
at = 

-i&rF)+J*E, 

where C = 2&/(y - 1) is the specific heat, E is the electric field and F is the thermal 
flux. 

Each equilibrium satisfying (1) is calculated by a two-stage process [5]. Stage I is 
an Eulerian timestep in which the computational mesh is temporarily frozen and the 
diflusion equations are solved; hence the omission of advective terms from (2) and (3). 
This is followed by Stage II, a Lagrangian timestep in which the variables n, T, BB 
and B, change adiabatically by relaxation of the mesh until (1) is satisfied. Only Stage I 
of the calculation will be discussed here, Stage II having been described together with 
a listing of the FORTRAN code and test results in Ref. [5]. 

Apart from inessential numerical factors the thermal and magnetic energy contents 
of a cylinder of radius a are 

w, = f a CTr dr, W, = la iB& dr, W, = la iBz2r dr. (41 0 

To demonstrate that the differential equations conserve the energy sum W = W, + 
W, + W, the standard method is to multiply Eqs. (2) by B. and B, respectively and 
add to (3). Integration by parts from r = 0 to r = a yields 

aw 
-=--a[ExB+F],,,. at (5) 

When (l)-(3) are solved by finite differences an error d W results [2]. Denoting the 
relative errors E = d W/W of the two stages by eI and cII respectively we show in the 
following sections that or can be eliminated completely provided that the appropriate 
formulas are used for the ohmic heating term in (3). The proof involves a general- 
ization of the two processes of multiplication by B and integration by parts to the 
finite difference case. It is interesting that the elimination of or is quite independent of 
the functional form of the electric field E provided that E enters in an identical way 
in the difference equivalents of (2), (3) and (5). The error en associated with motion 
has been analysed by Lindemuth [2] and is monitored by the ATHENE 1 code to 
check the accuracy of the calculation. 
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3. FINITE DIFFERENCE EQUATIONS 

A nonuniform mesh 

0 = r1 , r2 ,..., rN , rN+l = a (6) 

is used which remains fixed in Stage I, a being the radius at which boundary conditions 
are to be applied. The finite difference notations used in [2] and [S] are adopted here 
with minor modifications [6]. The dependent variables T, Be , B, are defined at the 
half-points (cell centers) 

r = rj+112 = &(rj+l + rj) = i(r+ + r-), (7) 

and subscripts (j - Q, j + 1,j + 2) are denoted respectively by (- -, -, f, ++). 
These variables are to be regarded as cell averages, i.e., the magnetic fluxes and the 
energies associated with cell j + fr are defined to be 

& Ar, Bz AA, (8) 
and 

CT AA, &Bo2 AA, $Bz2 AA, (9) 
with 

Ar=r+-rr_, AA = r Ar = +(r+2 - r-“). (10) 

Variables at the new time level n + 1 are indicated by an asterisk. Then the difference 
equivalents of (2) and (3) are 

Ar(B,* - Bo) = At SE,, 

A&B,* - Bz) = -At 6(rE&, 

C AA(T* - T) = At(--6(S) + AA E * ,I), 

where 6 is the difference operator defined here by 

(11) 

w> 

(13) 

v =f+ -.f-, Sf+ =f++ -.A Sf- =f-f--, (14) 

and the time levels at which the expressions on the right-hand sides of (1 l)-(13) are 
to be evaluated are for the moment left unspecified. 

Conservation of magnetic flux is exhibited in the usual way by summing (11) and (12) 
over all mesh intervals: 

f (B,* Ar - & Ar) = At(Ez,N+l - E,,,) 
1 

(15) 

N 

T (Bt AA - B, AA) = -At(rE,),+, . (16) 

These identities are independent of the expressions used for (Ee , E,), provided that 
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the same expressions are used for both of the adjacent cells j - $, j + &, but two 
points should be noticed. First, one frequently wishes to use an implicit scheme [l] 

E = BE*+1 + (1 - e) E” 07) 

in order to allow dt to take a value limited only by the accuracy of the calculation, 
and in ATHENE 1 a fully-implicit scheme (e = 1) is in fact used for both magnetic 
and thermal energy diffusion. Second, it is desirable to be able to represent the 
frequently encountered case of a uniform axial current distribution 

B. = ; L-U (18) 

exactly on a nonuniform space mesh, which forces the choice of difference formula 

with 
l+ = &(r++ + r). (20) 

4. ENERGY SUMS 

For large dt the ohmic heating term dt(dA E * J) in (13) can also become large, 
especially when anomalous or turbulent transport coefficients are used [7]. It is 
therefore necessary to ensure that there are no truncation errors in the calculation of 
E * J. To obtain a finite difference analog of (5) we multiply (11) and (12) by the time 
averages [2] 

t-B, = $r(B,* + BJ, B, = i(B; + Bz) (21) 

respectively and sum over the cells j = (1, N). Pairing terms on the right-hand sides 
with the same index j then gives 

w? - w* = At - ; a@‘,) - kv+1/2(&h+1 . 
I 

(23) 
2 i 

The Poynting vector at the outer boundary and the ohmic heating associated with 
the outermost half-cell are simplified by defining rN+3,2 = rN+1 = d. We also define 
time-average current densities 

f = f(rQ 
*,3 - (j = 2,..., N + l), 

ri Arj 

3~ = - % (j = 2 ,..., N + i), 3e,l = 0, (25) 
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with drj = ri+l/z - rjVIIz = g(r,, - r& from (7), and two separate sequences of 
area elements 

A’Aj = i;i Arj (j = 2,..., N + l), A’A, = +rl”& ) 

A”Aj = ri Ar, (j = 2,..., N + l), A”& zzz 1r2 2 312 3 
with 

N+l N+l 

1 A’A, = C A”Aj = ?g AAj+l,, = a2/2. 
64 j=l 

Then (22) and (23) become respectively 

(26) 

(27) 

(28) 

N+l 

we - we = At - c (A'AJJL>~ i- (&h+w2 E&N+, , 
1 I 

Ntl 

W,* - W, = At - C (A”AjeEe)j - B 
1 

z,N+2/2trE,),,i. 

where the summation is over all cell boundaries (although in (30) the central point 
j = 1 does not contribute). 

5. OHMIC HEATING 

Summation of Eq. (13) over all cells gives 

J+‘F - WT = At -(rpl~+l + $ (JeEe + JSh+m AAj+m 
/ I 

(31) 
j=l 

so that exact conservation of energy is ensured if E = f? is defined by (17) with the 
same value of 0 that is used in the diffusion equations (0 = 1 in ATHENE I), if 
J = J = +(Jn+l + J”), and if the summation in (31) precisely corresponds to those 
of (29) and (30). This can be achieved by allocating the ohmic heating associated with 
each cell boundary j in (29) and (30) in an appropriate way. For 2 < j < N we have 
found it best to assign (J * E)j to the cells on either side in proportion to the “half- 
masses” pj-drj2 - rf-,,,)I2 and pi+llz(ri2,1,2 - rj2)/2. All the heating associated 
with the central point r = 0 is assigned to cell j = Q, and that associated with the 
outer boundary r = u is either given to the outermost cellj = N + $ or, in practice, 
treated as a direct loss to the wall or liner since this makes the calculation run more 
stably. 

Allocation in proportion to the masses leads to equal temperature increments and 
therefore to a smooth temperature profile. Allocation in proportion to the areas 
A&l,2 was also tried, but is not recommended since it may cause trouble when 
density gradients are present and in one instance led to an “explosion” of the central 
cell which by expanding could take almost all the heating associated with point j = 2 
(instead of its “ration” of 4) as well as that associated with pointj = 1. 
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To calculate the ohmic heating it is necessary to know p and therefore s, so that 
Eqs. (11) and (12) must be solved for B * = Bn+l before solving the temperature 
Eq. (13). 

The prescription given in this Note ensures exact conservation of magnetic energy, 
both locally and globally, for any form of electric field i?, e.g., for any value of I!? in 
Eq. (17), and for any value of the timestep dt. There are no nonphysical heating or 
cooling terms of the type that appear in [2, Eqs. (37), (47)]. Nevertheless there may be 
circumstances in which the local value of E * 8 could conceivably become negative 
leading to a nonphysical transfer of energy from the plasma to the magnetic field, and 
the timestep dt should in principle be monitored to prevent this. To simplify the 
discussion we assume the resistivity 7 (which is in general a tensor) to be a scalar 
quantity so that E = 75 and 

B - 3 = 7(BJ* + (1 - 6)J) . ;(J* + J). (32) 

For the Crank-Nicholson scheme 8 = 8 so that (32) is positive definite. Other 
schemes could only give trouble if J * J* < 0, i.e., if the direction of the total current 
changed by more than 90” during one timestep. This should be prevented on accuracy 
grounds if 1 J 1 is large, while if J changes sign by passing through zero the term (32) is 
quadratically small. No significant restriction on dt should therefore arise in practice. 

6. NUMERICAL TESTS 

Numerical tests have been carried out using the ATHENE 1 code to solve equations 
equivalent to (1 I)-(1 3) for the ohmic heating phase of a reversed-field pinch plasma. 
The initial conditions corresponded to a plasma of negligible thermal energy contained 
by a Bessel-function magnetic field distribution, and further details of the physical 
parameters are given in Ref. [7]. The diffusion equations are solved by the fully 
implicit method (6 = 1) and during the development of the code three runs were 
performed in which the ohmic heating rate took the forms: 

(A) B-9 (recommended in this Note), 

(B) e *J (current at time n), (33) 
(C) B -J* (current at time n+ +), 

withfi: = E*. Each run was carried forward 500 steps in double precision (64 bits) on 
an ICL 4/70 computer using a constant dt = 50 psec, and at each step (consisting of 
two Stages I and II) the following were calculated: W the energy content at the 
beginning of the step, WyC the content after Stage I (diffusion), W: the content after 
Stage II (relaxation to pressure equilibrium), and d Win the net energy input at the 
wall resulting from the thermal flux and the Poynting vector. The boundary conditions 
at the wall maintained the temperature T constant, and the electric field was pro- 
grammed to sustain the reversed-field configuration [7]. For each run the formula 
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used for the Poynting vector was compatible with the corresponding ohmic heating 
term (33). 

Table I shows the relative errors defined as 

Stage I: 

Stage II: El1 = & r1 (WI? - WC>, 

(34) 

(35) 

TABLE I 

Relative Energy Errors 

A B C 

QI -8.3 x lo-l3 0.0286 0.0269 

611 -8.0 x 1O-4 -9.2 x lo-* -8.1 x lo+ 
, 

5 -4.6 x lo-= 0.152 0.144 
, 

31 -4.4 x 10-s -4.9 x 10-a -4.8 x 1O-8 

where W, is the total energy at the final step IZ = 500. For convenience we have also 
normalized the errors to the total thermal energy W,,, at the final step and these are 
shown as 

611 = %IIWF/WT,F . (36) 

It can be seen that a substantial error q has occurred in runs B and C, and that this 
is considerably greater than the error qI of Stage II which is acceptably small (0.1%). 
The error q arising from the recommended prescription A is entirely negligible and 
results only from double-precision round-off errors. The difference between the three 
cases is illustrated in Figure 1 which shows the time variation of the axial temperature, 

t (ms) 

FIG. 1. Variation with time of axial temperature in an ohmically heated reversed field pinch. 
The ohmic heating term used in the three calculations is given by Eq. (33). 
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indicating that an incorrect choice of the ohmic heating term can seriously disturb the 
results of the calculation. 

Finally, it should be mentioned that a straightforward and therefore perhaps 
“natural” choice for the ohmic heat developed in time dt might be the fully explicit 
formula vJ2 dr, since this depends only on known quantities at time n. This was 
actually tried in an early version of the program and proved catastrophic, the reason 
being that the heat production is then proportional to 7 dt and bears little relation 
to the available magnetic energy B2/2. A warning may therefore be appropriate in 
case this formula has been used in other codes. 
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